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Abstract. We investigate the possibility of observing direct CP violation in the decay modes B− → D0D−
s

and D0D− within the standard model. Including the contributions arising from the tree, annihilation,
QCD as well as electroweak penguins with both time- and space-like components, we find that the direct
CP asymmetry in B− → D0D−

s is very small, ∼ 0.2%, but in B− → D0D− decay it can be as large as
4%. Approximately 107 charged B mesons are required to experimentally observe the CP asymmetry
parameter for the latter case. Since this is easily accessible with the currently running B-factories, the
decay mode B− → D0D− may be pursued to look for CP violation.

1 Introduction

CP violation is one of the least understood phenomena
in particle physics [1–3], although it was observed in the
K0–K̄0 mixing system more than 35 years ago. In the
standard model (SM), CP violation arises from a complex
phase in the Cabibbo–Kobayashi–Maskawa quark mixing
matrix [4]. Outside the kaon system, decays of B-mesons
provide a rich ground for investigating CP violation [5,6].
Within the SM, the CP violation is often characterized
by the so-called unitarity triangle [7]. By measuring CP
violating rate asymmetries in B decays, one can extract α,
β and γ, the three interior angles of the unitarity triangle.
The sum of these three angles must be equal to 180◦ in
the SM with three generations. At present we are at the
beginning of the B-factory era in particle physics, which
will provide us valuable insights in the phenomena of CP
violation. One of the main programs of the presently run-
ning and the upcoming B-factories is to measure the size
of CP violation in as many B decay modes as possible so
as to establish the pattern of CP violation in various B
decays. Among the most interesing B decay channels, the
“gold plated” mode Bd → J/ψKs, [8] allows the determi-
nation to be made of the angle β of the unitarity triangle
of CKM matrix. Recent measurement of the CP asym-
metry in the B0 → J/ψK0 and other related processes
e.g. ψ′K0, ηcK

0 etc. by the BELLE [9] and BaBar [10] de-
tectors at the KEK and SLAC B-factories together with
the earlier measurement of CDF [11] constitute the first
significant signal of CP violation outside the neutral kaon
system. The charmless rare B decays such as B → ππ,
πK etc. are also potentially important for the study of
CP violation, as widely discussed in the literature [12].
These decays in general proceed through two types of am-

plitudes: b → u tree amplitudes and b → s/d penguin
amplitudes. The interference of these two amplitudes can
give large CP violating asymmetries provided the strong
FSI phase differences between these two amplitudes are
not too small. Also a global analysis of the branching ra-
tios and direct CP asymmetries in these decays can yield
interesting information of the flavor sector of the stan-
dard model and at the same time provide a window to
new physics. The CLEO as well as the BELLE collabora-
tions have recently reported the observation of some rare
two body decays of the type B → πK as well as upper
bounds for the decay modes B → ππ and B → KK̄ [13].

While the most promising proposal for observing CP
violation in the B-system involves the mixing between
neutral B-mesons [1], the decays of charged B-mesons are
also of particular importance for establishing the detailed
nature of CP violation. Since charged B-mesons cannot
mix, a measurement of the CP violating observable in
these decays would be a clear sign of “direct CP viola-
tion” which has been searched for in K-system for quite
long with indefinite success. Only recently, such a kind of
CP violating effect has been observed in the K-system by
the NA48 [14] and KTeV [15] collaborations. For the bot-
tom meson case usually the charmless rare B decay modes
are preferred to study the direct CP violation, as these
decay modes proceed with more than one Feynman dia-
grams, in particular the decay mode B+ → π+K, which
can provide a direct CP asymmetry at the 20% level, if the
strong rescattering phase difference is significantly large.
Recently there has been significant progress in the theo-
retical understanding of the hadronic decays B → πK,
and methods have been developed to extract information
on the CKM angle γ from the rate measurements for these
processes [16]. In this paper we would like to look for
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some additional decay channels which could help us in es-
tablishing the presence of direct CP violation as quickly
as possible. With this purpose we investigate the direct
CP violating effects in the decays of charged B-mesons
to two charmed mesons, i.e. B− → D0D−

s and D0D−. It
is worth emphasizing that these decay modes are flavor
self-tagging processes which should be favored for experi-
mental reconstuctions. The decay mode B− → D0D−

s has
already been observed experimentally with a branching ra-
tio (1.3± 0.4)% and the upper limit for the B− → D0D−
channel is found to be < 6.7 × 10−3 [17]. These decay
modes, which are described by quark level transitions like
b → cc̄q (q = s/d for D−

s /D
− in the final state), proceed

through three distinct types of flavor topologies. These
are the color allowed but Cabibbo suppressed tree, anni-
hilation and the QCD as well as electroweak penguin dia-
grams. To get significant direct CP violation one would re-
quire two interfering amplitudes of comparable strengths,
with different strong and weak phases. The weak phases
arise from the superposition of various penguin contribu-
tions and the usual tree diagrams. The strong phases are
generated by the perturbative penguin loops (hard final
state interaction) [18] or final state interactions involving
two different isospins. Since the decay modes we consid-
ered here are single isospin channels, i.e. the final states
D0D−

s and D0D− are with isospin I = 1/2 and 1 respec-
tively, the second type of FSI strong phase differences are
absent for these channels. Therefore at first sight it ap-
pears that direct CP violating effects in these channels
would be negligibly small as the tree contribution domi-
nates over the other diagrams and thus have been over-
looked in the literature. But detailed calculation shows
that this is actually not so. In fact, the CP violating ef-
fects in the B− → D0D− channel can be as large as a few
percent, which can be experimentally accessible in the first
round of B-factories. The reason for the existence of such
a significant CP violating parameter may be the fact that
although the tree diagram for the b → cc̄d transition is
color allowed, it is doubly Cabibbo suppressed, and hence
its magnitude is not very much larger than the penguin
contributions. However, in contrast to the B → πK chan-
nel, the decay mode B− → D0D− cannot allow us to de-
termine the angle γ from the corresponding CP violating
effects. CP violating effects in the decays of the neutral
B-meson into double charmed mesons have been exten-
sively studied in [19–22], where it has been shown that
these channels can be used as a method alternative to the
J/ψKs mode for the extraction of the angle β.

In our analysis, we use the standard theoretical frame-
work to study the non-leptonic B− → D0D−

s (D−) de-
cay modes, which is based on the effective Hamiltonian
approach in conjuction with the factorization hypothesis.
The short distance QCD corrected Hamiltonian is calcu-
lated to next-to-leading order. The renormalization
scheme and scale problems with the factorization approach
for matrix elements can be circumvented by employing the
scale and scheme independent effective Wilson coefficients.
In the literature the contributions of space-like penguins
are neglected assuming form factor suppression. But as

pointed out in [23] the effect of space-like penguin ampli-
tudes can be remarkably enhanced by the hadronic matrix
elements involving (V −A)(V +A) or (S+P )(S−P ) cur-
rents. Therefore we have included the space- and time-like
contributions of both QCD and EW penguins, the annihi-
lation contribution in addition to the dominant tree dia-
grams. Assuming the factorization approximation, the ma-
trix elements of the tree and time-like penguin diagrams
have been calculated in the BSW model [24], whereas for
the evaluation of the matrix elements of the space and
annihilation diagrams we have employed the Lepage and
Brodsky model [25].

This paper is organized as follows. In Sect. 2 we briefly
discuss the effective Hamiltonian, together with the quark
level matrix elements and the numerical value of the Wil-
son coefficients in the effective Hamiltonian approach. As-
suming the factorization approximation, the matrix ele-
ments of tree and time-like penguins are evaluated in the
BSW model and for the space-like and annihilation dia-
grams we use the LB (Lepage and Brodsky) model. The
determination of the CP violating asymmetry is presented
in Sect. 3 and Sect. 4 contains our conclusion.

2 Framework

The effective Hamiltonian Heff for the decay modes B− →
D0D−

s and D0D− which are described by the quark level
transitions b → cc̄q (where q = s for the former and d
for the latter) have three classes of flavor topologies: the
dominant tree, annihilation, and both QCD as well as elec-
troweak penguins given by [5]

Heff =
GF√
2

{
λu[c1(µ)Ou

1 (µ) + c2(µ)O
u
2 (µ)]

+λc[c1(µ)Oc
1(µ) + c2(µ)O

c
2(µ)]

+(λu + λc)
10∑

i=3

ci(µ)Oi(µ)

}
+ h.c., (1)

where λu = VubV
∗
uq and λc = VcbV

∗
cq, and ci(µ) are the

Wilson coefficients evaluated at the renormalization scale
µ. The four fermion operators O1–10 are given by

Ou
1 = (ūb)V −A(q̄u)V −A,

Ou
2 = (ūαbβ)V −A(q̄βuα)V −A,

Oc
1 = (c̄b)V −A(q̄c)V −A,

Oc
2 = (c̄αbβ)V −A(q̄βcα)V −A,

O3(5) = (q̄b)V −A

∑
q′

(q̄′q′)V −A(V +A),

O4(6) = (q̄αbβ)V −A

∑
q′

(q̄′βq
′
α)V −A(V +A),

O7(9) =
3
2
(q̄b)V −A

∑
q′
eq′(q̄′q′)V +A(V −A),

O8(10) =
3
2
(q̄αbβ)V −A

∑
q′
eq′(q̄′βq

′
α)V +A(V −A), (2)



A.K. Giri et al.: Analysis of direct CP violation in B− → D0D−
s , D0D− decays 117

where O1,2 are the tree level current–current operators,
O3–6 the QCD penguin operators and O7–10 the EW pen-
guin operators. (q̄1q2)(V ±A) denote the usual (V ±A) cur-
rents. The sum over q′ runs over the quark fields that are
active at the scale µ = O(mb), i.e., (q′ ∈ u, d, s, c, b). The
Wilson coefficients depend (in general) on the renormal-
ization scheme and the scale µ at which they are evalu-
ated. In the next-to-leading order their values are obtained
in the naive dimensional regularization (NDR) scheme
at µ = mb(mb) [26]: c1 = 1.082, c2 = −0.185, c3 =
0.014, c4 = −0.035, c5 = 0.009, c6 = −0.041, c7/α =
−0.002, c8/α = 0.054, c9/α = −1.292 and c10/α = 0.263.

However, the physical matrix elements 〈P1P2|Heff |B〉
are obviously independent of both the scheme and the
scale. Hence the dependence on the Wilson coefficients
must be compensated by a commensurate calculation of
the hadronic matrix elements in a non-perturbative frame-
work such as lattice QCD. Presently, this is not a vi-
able strategy as the calculation of the matrix elements
〈P1P2|Oi|B〉 is beyond the scope of the current lattice
technology. However, perturbation theory comes to (par-
tial) rescue; with the help of it one-loop matrix elements
can be rewritten in terms of the operators and the effec-
tive Wilson coefficients ceffi which are scheme and scale
independent:

〈qq′q̄′|Heff |b〉 =
∑
i,j

ceffi (µ)〈qq′q̄′|Oj |b〉tree. (3)

The effective Wilson coefficients ceffi may be expressed by
[27]

ceff1 |µ=mb
= c1(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
1i

ci(µ),

ceff2 |µ=mb
= c2(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
2i

ci(µ),

ceff3 |µ=mb
= c3(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
3i

ci(µ)

− αs

24π
(Ct + Cp + Cg),

ceff4 |µ=mb
= c4(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
4i

ci(µ)

+
αs

8π
(Ct + Cp + Cg),

ceff5 |µ=mb
= c5(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
5i

ci(µ)

− αs

24π
(Ct + Cp + Cg),

ceff6 |µ=mb
= c6(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
6i

ci(µ)

+
αs

8π
(Ct + Cp + Cg),

ceff7 |µ=mb
= c7(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
7i

ci(µ)

+
α

8π
Ce,

ceff8 |µ=mb
= c8(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
8i

ci(µ),

ceff9 |µ=mb
= c9(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
9i

ci(µ)

+
α

8π
Ce,

ceff10 |µ=mb
= c10(µ) +

αs

4π

(
γ(0)T ln

mb

µ
+ r̂T

)
10i

ci(µ),

(4)

where r̂T and γ(0)T the transpose of the matrices r̂ and
γ(0), arise from the vertex corrections to the operators
O1–O10 derived in [28], which are explicitly given in [29].

The quantities Ct, Cp, Ce and Cg are arising from
the peguin type diagrams of the operators O1,2, the QCD
penguin type diagrams of the operators O3–O6, the elec-
troweak penguin type diagrams of O1,2 and the tree level
diagrams of the dipole operator Og respectively, which are
given in the NDR scheme (after MS renormalization) by

Ct = −
(
λu

λt
G̃(mu) +

λc

λt
G̃(mc)

)
c1,

Cp = [G̃(ms) + G̃(mb)]c3 +
∑

i=u,d,s,c,b

G̃(mi)(c4 + c6),

Cg = − 2mb√〈k2〉c
eff
g ,

ceffg = −1.043,

Ce = −8
9

(
λu

λt
G̃(mu) +

λc

λt
G̃(mc)

)
(c1 + 3c2),

G̃(mq) =
2
3

−G(mq, k, µ), (5)

G(m, k, µ) = −4
∫ 1

0
dxx(1 − x) ln

(
m2 − k2x(1 − x)

µ2

)
.

(6)
It should be noted that the quantities Ct, Cp Ce and Cg

depend on the CKM matrix elements, the quark masses,
the scale µ and k2, the momentum transferred by the vir-
tual particles appearing in the penguin diagrams. In the
factorization approximation there is no model indepen-
dent way to keep track of the k2 dependence; the actual
value of k2 is model dependent. From simple kinematics
[30] one expects k2 to be typically in the range

m2
b

4
≤ k2 ≤ m

2
b

2
. (7)

Since the branching ratio and the CP asymmetry depend
crucially on the parameter k2, here we would like to take a
specific value for it, based on the valence quark approxima-
tion instead of the conventionally used value k2 = m2

b/2.
As discussed in [23] the averaged value of the squared mo-
mentum transfer for B−(bū) → D0(cū)D−

q (qc̄) is given
by

〈k2〉 = m2
b +m

2
q − 2mbEq, (8)
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Table 1. Numerical value of the effective Wilson coefficients ceff
i for b → s and b → d transitions

b → s b → d

Time-like Space-like Time-like Space-like

ceff
1 1.168 1.168 1.168 1.168

ceff
2 −0.366 −0.366 −0.366 −0.366

ceff
3 0.0225+i0.0044 −(0.0096 + i0.0003) 0.0197+i 0.005 −(0.0123 − i0.0066)

ceff
4 −(0.0456 + i0.0133) (0.0505 + i0.0009) −(0.0373 + i0.015) (0.0586 − i0.0199)

ceff
5 0.0132+i0.0044 −(0.0189 + i0.0003) 0.0104+i0.005 −(0.0216 − i0.0066)

ceff
6 −(0.0478 + i0.0133) (0.0483 + i0.0009) −(0.0395 + i0.015) (0.0564 − i0.0199)

ceff
7 /α −(0.0282 + i0.0363) −(0.0303 − i0.0018) −(0.0119 + i0.0398) −(0.0143 + i0.0391)

ceff
8 /α 0.055 0.055 0.055 0.055

ceff
9 /α −(1.4252 + i0.0363) −(1.4273 − i0.0018) −(1.4089 + i0.0398) −(1.4113 + i0.0391)

ceff
10/α 0.481 0.481 0.481 0.481

where the energy of the quark q in the final D−
q -particle

is determinable from

Eq +
√
E2

q −m2
q +m2

c +
√
4E2

q − 4m2
q +m2

c = mb (9)

for time-like penguin channels, or from

Eq +
√
E2

q −m2
q +m2

u = mb +mu (10)

for space-like penguin diagrams. mb, mq and mc denote
the masses of the decaying b-quark, daughter q-quark and
the c-quark (created as a cc̄ pair from the virtual gluon,
photon or Z-particle in the penguin loop). For numeri-
cal calculations, we have taken the CKM matrix elements
expressed in terms of the Wolfenstein parameters with
values A = 0.815, λ = sin θc = 0.2205, ρ = 0.175 and
η = 0.37 [29]. The choice of ρ and η correspond to the
CKM triangle: α = 91◦, β = 24◦ and γ = 65◦. At the scale
µ ∼ mb, we use the current quark masses of [29]mu(mb) =
3.2MeV, md(mb) = 6.4MeV, ms(mb) = 90MeV, mc(mb)
= 0.95GeV and mb(mb) = 4.34GeV. With the specific
value of k2 obtained from (8)–(10), we obtain the values
of the effective renormalization scheme and scale indepen-
dent Wilson coefficients for the b → s and b → d transi-
tions as given in Table 1.

Now we want to calculate the matrix element 〈D−
q D

0|
Oi|B−〉 using the factorization approximation, where Oi

are the four quark current operators listed above. In this
approximation, the hadronic matrix elements of the four
quark operators (c̄b)(V −A)(q̄c)(V −A) split into the prod-
uct of two matrix elements, 〈D0|(c̄b)(V −A)|B−〉 and 〈D−

q |
(q̄c)(V −A)|0〉, where a Fierz transformation has been used
so that flavor quantum numbers of the currents match
with those of the hadrons. Since Fierz rearranging yields
operators which are in the color singlet–singlet and octet–
octet forms, this procedure results, in general, in matrix
elements which have the right flavor quantum numbers
but involve both singlet–singlet and octet–octet current
operators. However, there is no experimental information
available for the octet–octet part. So in the factorization
approximation, one discards the color octet–octet piece

and compensates this by treating Nc, the numbers of col-
ors as a free parameter, and its value is extracted from the
data of two body non-leptonic decays.

The matrix elements of the (V −A)(V +A) operators
i.e. (O6 and O8) can be transformed into (V − A)(V −
A) form by using Fierz ordering and the Dirac equation,
which are given by

〈D−
q D

0|O6|B−〉 = Rq〈D−
q D

0|O4|B−〉, (11)

with

Rq =
2mD−

q

(mb −mc)(mq +mc)
, (12)

where the quark masses are the current quark masses. The
same relation works for O8.

Hence, one obtains the transition amplitude for B− →
D−

s D
0 and D−D0 as (the factor GF/21/2 is suppressed)

A(B− → D−
s D

0)

= λu

{
(a4 + a10 + (a6 + a8)Rs)X(BD0,D−

s )

+(a1 + a4 + a10 + (a6 + a8)R′
s)X

(B,D0D−
s )

}
+λc

{
(a1 + a4 + a10 + (a6 + a8)Rs)X(BD0,D−

s )

+(a4 + a10 + (a6 + a8)R′
s)X

(B,D0D−
s )

}
, (13)

A(B− → D−D̄0)

= λu

{
(a4 + a10 + (a6 + a8)Rd)X(BD0,D−)

+(a1 + a4 + a10 + (a6 + a8)R′
d)X

(B,D0D−)
}

+λc

{
(a1 + a4 + a10 + (a6 + a8)Rd)X(BD0,D−)

+(a4 + a10 + (a6 + a8)R′
d)X

(B,D0D−)
}
, (14)

where

X(BD0,D−
q ) = 〈D−

s |(q̄c)|0〉〈D0|(c̄b)|B〉,
X(B,D−

q D0) = 〈D0D−
q |(q̄c)|0〉 〈0|(ūb)|B〉. (15)
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X(BD0,D−
q ) denotes matrix elements of the tree and time-

like penguins, whereas X(B,D0D−
q ) stand for the annihila-

tion and space-like amplitudes. We have

Rq′ =
2m2

B

(mq −mu)(mb +mu)
, (16)

which arises from the transformation of (V −A)(V +A) op-
erators into (V −A)(V −A) form for space-like penguins.
It should be noted that λu = VubV

∗
us for B− → D0D−

s

whereas λu = VubV
∗
ud for B− → D0D− and similar ex-

pressions for λc. The coefficients a1, a2 · · · a10 are combi-
nations of the effective Wilson coefficients given by

a2i−1 = ceff2i−1 +
1
N eff

c

ceff2i , a2i = ceff2i +
1
N eff

c

ceff2i−1,

i = 1, 2 · · · 5, (17)

where N eff
c is the effective number of colors treated as

a free parameter in order to model the non-factorizable
contributions to the matrix elements and its value can
be extracted from the two body non-leptonic B decays.
A recent analysis of B → Dπ data gives N eff

c ∼ 2 [31].
Therefore, in our analysis, we take two sets of values for
N eff

c , i.e., N eff
c = 2 and N eff

c = 3, which characterizes naive
factorization.

The factorized hadronic matrix elements are evaluated
using the BSW model [24], which are given by

X(BD0,D−
q ) = ifDqF

BD
0 (m2

Dq
)(m2

B −m2
D0). (18)

The matrix element of the annihilation and space-like
penguins are given by [23]

〈D0D−
q |(q̄u)(ūb)|B−〉 (19)

= ifBfa
+(m

2
B)

[
m2

Dq
−m2

D0 − mDq −mD0

mDq
+mD0

m2
B

]
,

where the value of the annihilation form factor is given by
fa
+(m

2
B) = i16παsf

2
B/m

2
B [25].

After obtaining the transition amplitude, the branch-
ing ratio is given by

BR =
|p|

8πm2
B

|A(B− → D0D−
q )|2

Γ
, (20)

where |p| is the momentum of the emitted particles and
Γ is the total decay width.

Using (13)–(19) we obtain the transition amplitude (in
units of GF/21/2):

A(B− → D0D−
s )

= λu(0.1898 − i0.6483) + λc(0.1889 + i4.418)
[λu(0.2019 − i0.6817) + λc(0.201 + i4.698)], (21)

A(B− → D0D−)
= λu(0.2259 − i0.5616) + λc(0.2259 + i4.8185)
[λu(0.2393 − i0.589) + λc(0.2393 + i5.124)], (22)

where we have used the decay constants (in MeV) fDs =
280, fD = 300 [17] and fB=180 [32]. In the above equa-
tions, the upper values correspond to N eff

c = 2 and the
lower bracketed values to N eff

c = 3.

3 CP violating asymmetry

For charged B∓ decays, the CP violating rate asymme-
tries in partial decay rates are defined by

aCP =
Γ (B− → f−) − Γ (B+ → f+)
Γ (B− → f−) + Γ (B+ → f+)

. (23)

As these decays are all self-tagging, the measurement of
these CP violating asymmetries is essentially a counting
experiment in well-defined final states. Their rate asym-
metries require both weak and strong phase differences
in the interfering amplitudes. The weak phase difference
arises from the superposition of amplitudes from various
tree (current–current) and penguin diagrams. The strong
phases which are needed to obtain non-zero values for
aCP , are generated by absorptive parts in penguin dia-
grams (hard final state interactions).

For the B-meson decaying to a final state f and the
charge conjugated B− → f we may, without any loss of
generality, write the transition amplitude as

A(f) = λuAueiδu + λcAceiδc , (24)

Ā(f) = λ∗
uAueiδu + λ∗

cAceiδc , (25)

where λi = VibV
∗
iq, Au and Ac denote the contribution

from tree and penguin operators proportional to the prod-
uct of CKM matrix elements λu and λc respectively. The
corresponding strong phases are denoted by δu and δc
respectively. Thus the direct CP violating asymmetry is
given by

aCP =
−2Im(λuλ

∗
c)Im(AuA

∗
c)

|λuAu|2 + |λcAc|2 + 2Re(λuλ∗
c)Re(AuA∗

c)

=
2 sin γ sin(δu − δc)∣∣∣∣λuAu

λcAc

∣∣∣∣ +
∣∣∣∣ λcAc

λuAu

∣∣∣∣ + 2 cos γ cos(δu − δc)
, (26)

where the weak phases entering in the b→ s/d transition
is equal to (−γ), as we are using the Wolfenstein approx-
imation, in which λc has no weak phase and the phase of
λu is −γ. The strong phase (δu − δc) is caused by the final
state interactions. The strong phases are given by

sin(δu − δc) = 1
|AuAc| (ImAuReAc − ImAcReAu), (27)

cos(δu − δc) = 1
|AcAu| (ReAuReAc + ImAuImAc). (28)

4 Conclusion

Using the next-to-leading order QCD corrected effective
Hamiltonian, with the scale and scheme independent Wil-
son coefficients, we have systematically studied the two
charm hadronic decay modes B− → D0D−

s and D0D−
within the framework of the generalized factorization. The
non-factorizable contributions are parameterized in terms
of N eff

c , the effective number of colors. For numerical cal-
culations, we have used two different sets of values for
these parameters:
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Table 2. Branching ratio and CP asymmetry in % for B− → D0D−
s , D0D− decay modes

Decay modes Branching ratios (BR) CP asymmetry
Neff

c = 2 Neff
c = 3 Expt. Neff

c = 2 Neff
c = 3

B− → D0D−
s 1.29 × 10−2 1.46 × 10−2 (1.3 ± 0.4) × 10−2 0.18 0.18

B− → D0D− 8.72 × 10−4 9.86 × 10−4 < 6.7 × 10−3 3.62 3.62

(1) N eff
c = 2,

(2) N eff
c = 3, which holds for naive factorization.

The existence of a direct CP violating rate asymmetry
requires two interfering amplitudes having different CP
non-conserving weak phases and CP conserving strong
phases. The former may arise either from the standard
model CKM matrix or from new physics, while the lat-
ter may arise from the absorptive part of a penguin dia-
gram or from final state interaction effects of two different
isospins. Since the channels we considered here are single
isospin channels, the second class of strong phase differ-
ences do not arise for these channels. In our analysis, the
weak phases are due to the CKM matrix and the strong
phase differences arise due to the absorptive part of pen-
guin diagrams. The branching ratio and the CP violating
asymmetry parameter are estimated using (20) and (26)
and are presented in Table 2.

From the results we have observed the following:

(i) The predicted branching ratio for the decay mode
B− → D0D−

s agrees very well with the experimental
value for N eff

c = 2, and the CP violating parameter
for this mode is quite small.

(ii) The branching ratio for the decay mode B− →
D0D− lies below the present experimental upper
bound and the CP violating parameter for this mode
is quite significant. The number of charged B-mesons
required to observe this CP violating signal to three
standard deviations is given by NB = 9/(BR×a2CP )≈ 7.9 × 106, which is easily accessible with the cur-
rently running B-factories.

Since we have obtained these results using model de-
pendent calculations, in general they may suffer from some
theoretical uncertainties. Let us briefly point out the pos-
sible sources of these uncertainties.

(1) Evaluation of matrix elements: We have used the gen-
eralized factorization approximation along with the
BSW [24] and the Lepage and Brodsky [25] models
to evaluate the transition matrix elements. The non-
factorizable contributions are taken care of by consid-
ering the effective number of colors N eff

c = 2, obtained
from the experimental data of B → Dπ. Although
the generalized factorization approximation and BSW
model are rather successful in explaining the data on
a number of exclusive B decays, there might be some
amount of uncertainty introduced due to them.

(2) Running quark masses at the scale mb: The current
quark masses arise in the decay amplitudes because
the equation of motion has been applied to the matrix
elements obtained from the Fierz transformation of

(V −A)(V +A) penguin operators. Since the current
quark masses are not known precisely, this will result
in large uncertainties in the predicted results.

(3) There will be some amount of uncertainty due to the
parameters (ρ, η,A, λ) of the CKM matrix.

(4) The magnitude of momentum transfer to the gluon/
γ/Z in the penguin diagram: We have employed the
valence quark approximation to fix the value of k2
for calculating the value of the effective Wilson coef-
ficients. The common argument is that while the CP
violating rate asymmetry is quite sensitive to the value
of k2, this is not the case for decay rate.

(5) Strong FSI phases: In our analysis the strong phases
are generated by the absorptive parts of the penguin
diagrams. The value of the strong phase difference is
quite sensitive to the CP violating rate asymmetry.

Although in general the theoretical predictions suffer
from many hadronic uncertainties we conclude that there
is a fair chance for observing direct CP violation asym-
metry in the B− → D0D− decay channel. It has been
emphasized in [19–22] that the neutral B-meson decay
modes to two charmed mesons can be used to measure
the unitarity angle β as an alternative to the gold plated
mode B → J/ψK. We argue further here that the mode
B− → D0D− can be used to quickly settle down the
search for observing direct CP violation outside the kaon
system, if the SM description of CP violation is correct, or
else could provide us a clear indication of the presence of
new physics. It should be noted here that the decay mode
is flavor self-tagging and hence experimentally favorable.
Furthermore, although the CP asymmetry is found to be
rather small, i.e., at the level of 4%, the branching ratio
is expected to be of order O(10−3), thereby making this
channel accessible and interesting at the B-factories.

To summarize, since the modes we consider are direct
decays and not time dependent, they may be observed
in any experimental setting where a large number of B-
mesons are produced. Apart from the SLAC and KEK
asymmetric B-factories these include CLEO and hadronic
B experiments such as HERA-b, BTeV, Collider Detec-
tors at Fermilab (CDF), D0 and CERN LHC-b or high
luminosity Z-factory. In particular, we emphasize that the
decay mode B− → D0D− may be searched for in the first
round of B-factory experiments (where it can be easily
accessible) to observe direct CP violation or to provide us
a hint for the presence of new physics.
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Rev. D 58, 094009 (1998); A. Ali, C. Greub, Phys. Rev. D
57, 2996 (1998)

28. A.J. Buras et al., Nucl. Phys. B 370, 69 (1992); M. Ciu-
chini et al., Zeit. Phys. C 68, 239 (1995)

29. Y.H. Chen, H.Y. Cheng, B. Tseng, K.C. Yang, Phys. Rev.
D 60, 094014 (1999)

30. N.G. Deshpande, J. Trampetic, Phys. Rev. D 41, 2926
(1990)

31. H.Y. Cheng, K.C. Yang, Phys. Rev. D 59, 092004 (1999)
32. A. Khodjamirian, R. Rückl, in Heavy Flavours II, edited

by A.J. Buras, M. Lindner (World Scientific, Singapore
1998)


